oy N
TE >

< e
- —_— E TR R
4 e WA &
L f

| (NASA-CR -32

TRAJECTORIES USIN.GCALCULATI A
VARYING FUNCTIONS

Univ,)

CALCULATION OF TRAJECTORIES USING CONSTANT
AND SLOWLY VARYING FUNCTIONS
- . o ,

PR . B .
" BOBBY K. CULPEPPER

ﬁm% P

AMRL 1045 DECEMBER, 1971

8369) e

OF e
C -
BOgSTANT AND SLOWLY N72-33778
Dec. .1971 g9 ;’Culpepper (Texas
' CsCL 22c¢ Uncl
las
16505

. .83/30

" APPLIED MECHANICS RESEARCH LABORATORY
THE UNIVERSITY .OF TEXAS AT AUSTIN AUSTIN, TEXAS




CALCULATION OF TRAJECTORIES USING CONSTANT AND SLOWLY VARYING FUNCTIONS

Bobby K. Culpepper
The University of Texas at Austin

Austin, Texas

AMRL 1045
December 1971

Applied Mechanics Research Laboratory
The University of Texas at Austin

Austin, Texas

—_

L



This report was prepared under

Contract No. NGL-44-012-008
for the

National Aeronautics and Space Administration

Headquarters

by the

Applied Mechanics Research Laboratory
The University of Texas at Austin

Austin, Texas

under the direction of

Paul E. Russell
Assistant Professor



PREFACE

' Since the problem of two bodies is the only problem in astrodypam—
ics with a known solufion for aribtrary initial conditions,"it has been used
in an approximate solution to the restricted problem of three bodies in the
form of patched conié orbits. Since the development of the patched conic
technique, several methods of approximating the solution to the restricted
probleﬁ of three bodies have been presented, but none of them utilize full
knowledge of the known integrals for the exact motion. It is believed that
a method that uses knowledge of the known functions of fhe motion and is
conceptually simple would be quite useful for studies of future space missions.

This study presents a method of calculating trajectories for the
restricted problem of three bodies using conic motion that is frequently
corrected in position and velocity. The correction in position and velocity
is calculated using knowledge of the existing integrals or‘slowly—varying
functions of the motion. This method is easily described. Assume that the
trajectory has just been corrected. The motion to the next correction point
and the correction there will be described. The independent variable is the
magnitude of the radius vector. A change in the independent variable Ar
is chosen and the trajectory is conically advanced thfough the interval Ar
Since the value of the function of the motion evaluated on the conic trajec-
tory 1s not the same as the value predicted for the exact motién, position .
and velocity corrections are applied to the conic trajectory so that the
value of the function will be the same as the predicted value. The process
is repeated until the terminal conditions are reached.

The results of this method are compared with numerically integrated
trajectories. This method is qualitatively compared with other methods of

ii



solution for the restricted problem of three bodies.
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ABSTRACT

This report presents a method of calculating trajectories for the
restricted problem of three bodies which utilizes conic propagation of the
state vector with frequent correction of position and veldcity by means of
a constant or slowly-varying function. This fast and accurate method of cal-
culating trajectories has been applied to the planar circular restricted
problem of three bodies, the planar elliptic restricted problem of three
bodies, and the ephemeral restricted problem of three bodies. Two methods
(the "refined" method and the "straight-forward" method) of determining the
direction of the position correction (ﬁc) are presented for the circular
restricted problem and the elliptic restricted problém_of three bodies. Only
the "straight-forward" method is used with the ephemeral restricted problem
of three bodies. The Earth, the Moon and a space Vehiclé comprise the res—.
tricted three body model that is used. Earth-to-Moon trajectories with per-
ilune altitudes varying from 59 to 4551 nautical miles are calculated and
compared at perilune with numerically integrated and patched conic trajec-
tories. The results, as compared to the numerically integrated trajectories,
are within 0.2% in position and velocity vector magnitude (relative to the
Moon) for the "straight-forward" and the 'refined" choices of the position
correction direction (EC)

A detailed discussion of the two methods of choosing ﬁc is pre-
sented. A qualitative comparison between this method and other methods of
calculating trajectories for the restricted problem of three bodies is also

presented.
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NOMENCLATURE

The following list presents all significant symbols and abbrevia-

tions used in the main body of the text. Each symbol is accompanied by a

brief description and the number of the equation where the symbol is intro-

duced.
Vectors:
_ _ )
A vector - (A = ) wused in Equation (2.36)
a average perturbing acceleration (2.33a)
B vector used in Equation (2.37)
—
erl
_ unit vectors relative to the space vehicle (3.7)
®a
|-
—
e
bl
E& unit vectors describing primary two relative to primary one
e (2.13)
g
h angular momentum of massless particle (2.18)
He unit vector in position correction direction (2.29)
H; unit vector in the velocity correction direction (2.23)
ﬁi position vector of primary one relative to CM (2.3)
ﬁé position vector of primary two relative to CM (2.3)
—5/1 position vector of primary two relative to primary one
r position vector of massless particle relative to CM (2.1
;i position vector of massless particle relative to primary one
(2.1)



Scalar

E
e

£

S

2/1

2/1

2/1

Cye

position vector of massless particle relative to primary two
(2.1)

change of position vector (7.2)

change of velocity vector (7.1)

position vector correction (2.28)

velocity vector correction (2.28)

angular velocity of primaries about CM (2.10)

eccentric anomaly of primary two relative to primary one (4.2)

- eccentricity of primary two relative to primary one (4.2)

angular velocity of primary two relative to primary one (4.3)

universal gravitational constant in Section (3.4)
Jacobi function (2.16)
rate of change of Jacobi function (2.17)

J evaluated on the conic trajectory (2.27)
dimensional mass of primary one (2.2)
dimensional mass of primary two (2.2)

projection of r. onto the Earth-Moon plane for the ephemeral

1

restricted problem of three bodies

projection of r_, onto the Earth-Moon plane (5.7)

2
magnitude |r| (2.1)

magnitude (;il (2.1)

magnitude |r (2.1)

|

X1



r initial value of » (2.25).

o .
v, final value of r (2.25)
Ar increment in. r (2.25)
Aro . initial increment in Ar (2.25)
Arf' final increment in Ar (2.25)
At increment in time (t2 - tl) (2.26a)
8§t time correction (2.30)
Sr magnitude |8r| (2.29)
87 magnitude |6r| (2.29)
o angle from g% to E; [Figure (3.2)]
éi (i = 1,2) angular velocity of ;i
u mass ratio-parameter (2.2)
o variable = + 1 (8.11)
o angle between E; and H; (3.7)
w magnitude |u]
Subscripts:
f indicates final value
i indicates 1 or 2
o indicates initial value
P indicates perturbing acceleration direction
X referenced to x direction
y referenced to y direction
z referenced to 2z direction

®il



Miscellaneous Symbols:

. e as d
() indicates HE-( )

() indicates ( ) within the rotating coordinate system

at

Abbreviations: Numbers to the side represent Sections where they first appear.

CM center of mass (2.2)
er Earth radii &3;4)
fps feet/éecond (3.4)
hr hour (3.4)
min minute
n., mi nautical mile (3.4)
rad radians (Table 1)
sec second (3.4)
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CHAPTER 1
INTRODUCTION

1.1 General Background

éince the problém of two bodies is the only problém in astrodynamics
with a known solution for arbitrary initial conditions, it has been used eX—‘
tensively as a model of the problém of planeteorbiting satellités. The solu-
tion to the problem‘of two bodies is also a good approximation to the motion
of the planefs relative to the sun. However, it is not a good approximation
for Earth-Moon or interplanetary trajectories, because it cannot include mul-
tiple force centers. This led to the use of the restricted® problem of three
bodies as a mathematical model for Earth-Moon trajectories and successive

portions of interplanetary trajectories.

1.2 Restricted Problem of Three Bodies

The restricted problem of three bodies in this study is the motion

of a massless particle (space vehicle) in the vicinity of two massive primar-

ies (see Figure 1.1). The'unit base vectors e, and éy are in the plane

. e
\4‘
MASSLES S
\,:n-nc;.z _
9. e
_ g, O—
z
n _
r
c™m
. P
R R PRIMARY
1 2 2

PRIMARY 1

Figure 1.1 Diagram for the Restricted Problem of Three Bodies

*Restricted in the sense that the mass of the third body is small enough that
it does not affect the motion of the two primaries.

1



containing the motion of the two primaries relative to the center of mass

(CM) and éz is the unit vector perpendicular to that plane.

1.2.1 Planar Circular Restricted Problem of Three Bodies

The circular restricted problem of three bodies is the configuration
where the two primaries are in circular orbits about the CM and the motion of

‘the particle is in the plane of motion of the two primaries.

1.2.2 Planar Elliptic Restricted Problem of Three Bodies

The elliptic restricted problem of three bodies is the system where
the two primaries are in elliptic orbits relative to the CM. The motion of

the particle is again in the plane of the motion of the two primaries.

1.2.3 Ephemeral Restricted Problem of Three Bodies

The ephemeral restricted problem of three bodies is the three-dimen-
sional motion of the massless particle, where the position and velocities of
the primaries (the Earth and the Moon) are obtained from availablé ephemeris
information. Such ephemeris information is available in readily accessible
form for computer use on the JPL ephemeris tape[6].*

For arbitrary initial conditions there are no known analytic solu-
tions to any of the above mentioned problems. Since the restricted problem

" of three bodies is a representative mathematical model of the Earth-Moon space
vehicle system and of successive parts of interplanetary trajectories, it is
desirable to have a fast, accurate solution from the standpoint of guidance

and trajectory analyses. This solution can be used to determine parameter

sensitivity and guidance sensitivity for several trajectories with little

&Numbers appearing in the text as superscripts indicate references listed in
the Bibliography.



computer time expense. To perform a similar analysis using a numerical inte-

gration technique would be very expensive in terms of computer time.

1.3 Approximate Solutioné

| The patéhed conic, introduced by Egorov[7] in 1958, was oné of the
first approximate solutions to the restricted problem of three bodies. The
patched coﬁic for the restricted problem of three bodies consists of two
conic segments, the conic of a particle about primary one without the pertur-
bations of primary two and the conic of the same particle about primary two
without primary one perturbations, which are joined at‘a point in space to
produce the composite trajectory. The joining point ig space is taken to lie
on the surface of a nearly spherical surface, centered at primary two, which

is called the Mean Surface of Infiuence and is discussed in Ref. [8] (see"

Figure 1.2).

Mean Surface of Influence

Hyperbolic
segmcnf

\ . relative
Primary 1 Elliptic segmenf / to Primary
relative to Primary 2

Primary 1

Figure 1.2 Patched Conic Geometry for Primary 1 to Primary 2 Trajectories



Somé of the disadvantages of the patched-conic are:

l; it produces large errors for trajectories.that have long tranéit

times, |

2. it is sensitive to the choice of the magnitude of the mean sur-

face of influence, and

3. it‘has no means of including the effect of the perturbing body.
Its advantages‘ére: | |

1. it is very fast computationally

2. it provides reasonable velocity requiremenfs if the initial and

final position vectors are given.

The method of matched asymptotic expansions[ll’lQ’lsj is another
method of approximating the trajectory of a particle in the presence of two
primaries. The initial difficulty of the matched asymptotic expansion ié
the algebra and computér program check out required to obfain suitable re-

sults. Until later refinements were applied to the me’chod[lucI

, the computer
time required to obtain a solution is almost as large as the time required to
obtain a numerically integrated frajectory.

During the period of time from 1963 to 1966 much work was done at

NASA and TRW Systems to improve the patched-conic by applying a velocity cor-

rection at the patch point[27’28]. The velocity correction being calculated

from knowledge of the "Jacobian Function" for the restricted problem of three
bodies. This method was an improvement to the patched conic, but was not suf-

ficient for all cases.

During the period of time from 1967 to 1969 the Hybrid Patched-Conic
[91 |

Technique was developed by Escobal, et al. At first appearance it seemed

that the Hybrid Patched Conic Technique was accurate and fast enough to meet

the needs of NASA and industry at the time. The disadvantéges to the Hybrid



Patched Conic Technique are that it requires a patched cqnic solution for a
reference trajectory, and its accuracy is limited if the perilune altitude
is large (e.g., greater than 3000 n.mi.).

In 1969 this investigation was initiated using knowledge of the
"Jacobian Condition" and the "angular Momentum condition" to make corrections
at several points along the trajectory to see if this would not produce a
quickly-calculatedktrajectory that was sufficiently accufate, as compared to
a numerically integrated solution. It was later determined that the angular
momentum correction was not accurate enough to help improve the accuracy.

After the presént investigation was initiated, it was learned that
several individuals at TRW Systems at Houston were working on the same type
of problems but with quite different approaches. They developed the multi~

fu] 311

conic method and the pseudo-conic method

The multi-conic method uses two-body motion as the basic propaga-
tion technique. Gravitational effects are accounted for by assuming that
each perturbing body causes' independent two-body motion. Thé effects are
then summed along the trajectory. The proceaure does involve a retracing
step and using a zero gravity step. Thus, the method is more. complicated
than the "Jacobian'" correction method presented here.

The pseudo-conic method also uses conic motion as method of propa-
gation, but it continues on past the mean surface of influence élong a tra-
jectory that is regarded as a pseudostate. Then it propagates from the mean
surface of influence to the desired final time. The pseudo-conic does reduce
the patched conic error considerably, but it does not seem to be as accurate
as the multi-conic method.

[1,15,16,17]

An "integral hypersurface' technique has been used by

[17]

Nacozy to constrain the numerically integrated solution to remain on the



[15]

integrél surfaces. A similar technique has been used iteratively by Miller
in a gravitational n-body integration to control the usual ten first integrals
of motion. Miller[lGJ also ﬁsed the first ten integrals of thevequations of
motion as controls for nibody integration. In a comparison of a corrected
solution of the system with a similar, uncorrected solution, he finds that

the two solutions diverge from each other - indicating the instability of the"

(11

gravitational system. Aarseth used a similar integral surfaces technique
to correct the integrals, the positions, and the velocities of the computed

solution to account for the removal of escaping bodies from the system.

1.4 Motivation

The motivation for the approach taken here is that proper use of
the knowledge obtained from the '"Jacobian" Function could produce results that
are a significant improvement over the results obtained from a patched conic

trajectory with much less computer time than is required for numerical inte-

gration[Qu].
The first step was to apply the theory to the planar circular res-
tricted problem of three bodies.[23] Since the Jacobian Function is a constant

for the circular restricted problem of three bodies, it was felt that it would
be best to apply the theory to the circular restricted problem of three bodies
before proceeding to the elliptic and ephemeral restricted problem of three
bodies. The description of the method and the necessary equations are de-
rived in Chapter 2. The application to and the results obtained from the cir-
cular restrictedvproblem of three bodies are presented in Chapter 3. Next,

the elliptic restricted problem of three bodies is treated and the results
presented in Chapter 4. Last, the ephemeral restricted problem of three bodies

application and results are presented in Chapter 5. A detailed discussion of



the choice of the position vector correction direction (ﬁc) and the velocity
vector correction direction _(ﬁp) i; presented in Chapter 6. The summary
and conclusions are presented in Chapter 7.

A qualitative comparison of the patched conic, the hybrid patched
conic teéhnique, the matched asymptotic expansion technique, the multi-conic,

P
and the pseudo-conic is also presented in Chapter 7.



CHAPTER 2

DESCRIPTION OF METHOD

2.1 Assumptions
If the effects of the gravitational fields of the sun and other
planets are neglected, the system containing the Earth, the Mooh, and a space

vehicle can be apprbximated as a three-body systém (see Figure 2.1).

’ VEHICLE
0/ F / MOON
>o

~-
T~

Figure 2.1 Configuration of the Earth, the Moon, and the Space Vehicle.

This can be modeled, as in Figure 2.2, as the restricted problem of
three bodies. The restriction is-that thé space vehicle (or the massless
particle) does not affect the motion of the two primaries. The masses of the
two primaries are assumed to be spherically symmetric and homogeneous in

concentric layers.



MASSLESS |
\IiARTICLE _

L B =

PRIMARY
R, »

PRIMARY 1

Figure 2.2 Diagram for the Restricted Three-Body Problem (R3BP).

The problem will be formulated in a vectoral notation that can be
used for both two- and three-dimensional problems.  For the ephemeral res-
tricted problem of three bodies the position and velocities of the primaries

(the Earth and the Moon) are obtained from the JPL ephemeris tape[6].

2.2 Development of the General Equations of Motion

The non-dimensional equation of motion for the massless particle is

- rl
r+ (1L -p)—=+u

3 = 0 (2.1)

(see Figure 2.2) where u , the mass ratio-parameter, is

™

TEI—;—EET (2.2)

and m, and m, are the dimensional masses of the two primaries.

1 2
; = acceleration.of the massless particle relative to the center
of mass (CM).
r = position vector of the massless particle relative to the CM.



Therefore,

where

= position vector of the massless particle

one.

= position vector of the massless particle

two.
El = p - 5
;l = p - ﬁl
Rl = -uRy,
R, = (- “)ﬁz/l
Ryp = Ry =R = e Ry,

Position vector

Position vector

Position vector

of Primary two

of Primary one

of Primavry two

10

relative to primary

relative to primary

, 52 = r-R, (2.3)
, 32 = 7 - ﬁz (2.4)
(2.5)
(2.6)
(2.7)

relative to Primary one.

relative to the CM.

relative to the CM.

The equations of motion relative to primary one and primary two are, respec-

tively,

and

The

r
= 1 2
+ - S 2
ry (1 ) 7t rs
] 2
. r r
rot =+ (1 - W) {—= -
2 r3 r3
2 1

R
" g/l = 0 (2.8)
R
2/1
—%—i- = 0 (2.9)
R
2/1

velocity r and acceleration r can be written as



where

In the cartesian

tors

e
% ?

e

y

b

r
o]
r

C

. (o] X )
P =T r+twxT ' (2.10)
- 0 _ - - - ° - |
r = r+wx(WxXPr)+20Xr+wsxer (2.11)
d ,-
= EE'(P) , | | - (2.12a)
=. dr/dt with e_, e_, e_ fixed. (2.12b)
x y Z
oordinate system indicated by the rotating, unit base vec-
éz R
xe  + ye, + ze (2.13)
xe  + yey t ze, | (2.14)

11

angular velocity of primaries about the CM .

we (2.15)
zZ

The Jacobian function for the restricted problem of three bodies and its
£3,29]

derivative are

and

where

e

12 ° 1 - - - ,
Freor- 5—(w xr)* (w=x07r) f (1 - u)/rl - u/§2 (2.16)

1
|

L] O
- - = 1 2
-w * h+ u(l - u)R2/l ;5-— ;g (2.17)
1 2
h = angular momentum of the massless
particle relative to the CM .
. o (2.18)
= Pxp = DPxT+ar:-w@ )
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This assumes that no other forces are acting on the system and

. R
= 2/l _ :
R2/l + ;5—— = 0 (2.19)
2/1
which implies that
w = we_ = (R xl:? ) /R? (2.20)
b4 2/1 2/1 2/1

For the case of the circular restricted problem of three bodies-

it is clear that

(2.21)

I
o

°
0 and R

Ele
i

2/1

This then leads to the well known Jacobian integral for the circular res-

tricted problem of three bodies (see pp. 16 of Ref. 29). That is,

Hto
Bio
1
N+

J = %— (axr)* (wxp) - (1 —u)/rl -~ u/r2 = Const. (2.22)

Further details of each of these equations (2.1-2.22) will be dis-
cussed as necessary in the remaining Chapters.

It is desirable at this point to discuss the method of application.

2.3 ‘Method of Calculation of Trajectories

Due to its computational simplicity, conic motion has been chosen
to be the method of trajectory advancement. The force center is the primary
‘on the same side of the surface of influence as the massless particle (the
surface of influence is defined on p. 148 ff of Ref. 8) and the independent
variable is the magnitude of the position vector from the f§rce center.
This choice of independent variable eliminates the need for iteration involv-
ing Kepler's equation.

After the trajectory has been conically advanced over the desired

position vector magnitude interval, a correction to the position and velocity
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is calculated using the Jacobian function, which is constant or slowly-vary-
ing for the exact motion. Slowly-varying functions [Equation (2.17)] must be

integrated over the propagation interval.

In the application of this method to the restricted problem of three
bodies one scalar (Jacobian) function is involved in the correction procedure.
This function is used to correct one velocity vector component and one posi-
tion vector component. The direction of the velocity component is th¢ approx-
imate direction of the fime—averaged perturbing acceleration. The position
component's direction is different and is discussed in Chapter 6.

The direction of the perturbing acceleration is obtained from Equa-
tions (2.8) and (2.9). For motion relative to primary one the unit vector in

the direction of the average perturbing acceleration

_ 3 - 3 .
- <R2/1/R2/1 +-r2/r2)- (2.29)
np = 3 — 3 .
Rys1/Ros1 = Fo/%2
where | indicates the absolute value. For motion relative to pri-

mary two this is

ﬁp . [_ 2/1/32/1 tr /rll (2.24)
’” Ry/1/Ryyp * ¥ /rll

Further details of the correction direction procedure will be given
as necessary in the appropriate sections.

Assume that the trajectory haé just been corrected. The motion to
the next correction point and the correction there will be described.

The interval of propagation Ar 1is chosen to vary linearly with r

and 1s calculated by means of the equation.
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Ar = Ar + (Ar
o} f

- Ar )(r -r )/ (v - r.) ' (2.25)
Where r and Aro are initial values and re and Arf are final values.
The state vector is conicaliy propagated to a new state vector at r + Ar .
Due to the choice of independent variable, no iterations are necessary and
this is a straightforward procedure.

At the new conically-advanced state, a "conic" Jacobian function
and its derivative JC and &c are calculated. The approximate values of

J and J at the newly advanced state are predicted using trapezoidal inte-

gration. That is,

i} + 0.5(5 . .
J, J,+ 0 5(J, + J,)ht (2.26)
where J2 is the predicted value of J at r + 4r , Jl and jl are the
values of J and J evaluated at the previous r , and
N ) e
t t, -4y . (2.26a)
where tl is the time associated with the trajectory at r and t2 is the
time associated with the trajectory at r + Ar . The derivative J2 is J
evaluated on the conic trajectory at t2 . Then J - J2 . Since the exact
motion is not conic
J ¢ J (2.27)

+ S (2.28)

e
+
Hiye
+
O
o}

H

¥
o}

and

GI—’=‘6 5 r = n
np r sr ncdr (2.29)

The unit vector ﬁp indicates the direction of the velocity correction while
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n, indicates the position vector correction direction. These are discussed
in Chapter 6.

Note that, since the time correction

5t = 0 ' (2.30)

the following equations are true:

v = d8r, = é&r ; S = 6r., = 6r (2.31)

The equation for determining §r and dr is

o o o o [o}
S (4 67) + (¢ + 67) -1

Hio
1

%[Z) x (7 + 62)1

c [ox (p+ 6r)] + %-(6 xv) * (wxr)-(1- u)/(rl + srl) (2.32)
+ (1 - u)/rl - u/(r2 + 6r2) + u/r2 = J-J,

Since two scalar quantities are being corrected by means of one scalar func-

tion, a relationship between 6r and 6r is needed. If a is the average

perturbing acceleration,

St aht (2.33a)

Sr

2aen? = 2 (67)(81) (2.33b)

where At is the time interval corresponding to Ar and is evaluated from
Kepler's equation. Ignore the difference between Bp and ﬁc (see Chapter

6) and use

Sr = %—(s%)(At) (2.34)

Equation (2.32) is linearized with respect to $r and 6r . The

resulting expressions for §r and Sr are
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. J -J '
ér = RN (f By (2.35a)
[(np )+'2— nc Y(At
(J - J )t
dr = 1 < (2.35b)

T halc
[(np A) + -2—-(nC B)éAt)]

[o]
with A r (2.36)

1t

o 2 (a4 ( o /oS up /rd) (2.37)
{(w 3 r) - [w - (w nc)]r + ‘l - rl/rl +our, /v, .

td
1t

After the correétions §r and &r are made to the trajectory,. the
process is repeated until the desired stopping condition (periluné) is sat-
isfied:

The method is applied to the circular restricted problem of three
bodies, the elliptic restricted problem of three bodies and the ephemeral res-
tricted problem of three bodies in Chapters 3, 4, and 5. The appropriate as-

sumptions and modified equations will be presented in the appropriate chapters.



CHAPTER 3

CIRCULAR RESTRICTED PROBLEM OF THREE BODIES

For the planar circular restricted problem of three bodies, the
motion of the massless particle takes place in the plane of motion of the
two primaries and the primaries are each in circular orbits about their

center of mass. This leads to the following reduced equations.

3.1 Equations for the Circular Restricted Problem of Three Bodies

The equation of motion is the same as Equation (2.1), and

= . R = . = L = .1
RQ/l e, 5 R2/l ey ; R2/l 1 and RQ/l 0 (3.1)

Rl = -ue R2 = (1 - u)ex (3.2)

The out-of-plane component =z = 0 , and
w = e , w = 0 (3.3)
Z .

The Jacobian function, J , [Equation (2.16)] remains the same, but the time
‘rate of change of the Jacobian function, J [Equation (2.17)], is zero.
The direction of the perturbing acceleration becomes

i - (5, + T/

n_ = . (3.4)

P S o+ 3 /pd
€. + r2/r2

for motion relative to primary one. For motion relative to pfimary two, the

dirvection of the perturbing acceleration is

17
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i - (=8, + 7 /r3)
n,o = — | (3.5)
e tTy/ny

The interval of propagatiop for the independent vapiable r.
(i = 1,2) is the same as Equation.(2.25). Since the Jacobian function
is a constant, the trapezoidal integrafion [Equation (2.26)] is not used.
The linearized equations for &r and §p are the same as Equations (2.35a),

and (2.35b).with the exception that

)
= _ - U2 = 8. - .3 .
B = e, XxT -1+ (1 u)rl/rl + ur2/r2 (3.6)

3.2 Velocity Correction Direction n

The velocity is corrected in the time-averaged direction of the per-
turbing acceleration over the pfopagation interval. Since the independent
variable is not time but is the position vector magnitude, this direction is
approximated.

Figure 3.1 shows the variation of mean anomaly with the position
vector magnitude for elliptic and hyperbolic conic orbits. Since the change
in mean anomaly M is proportional to the change in time, these curves can
be used to approximately determine the fraction of Ar corresponding to
At/2

Except near perifocus, the slopes of the curves shown in Figure
3.1 increase with increasing r . However, this increase is less for hyper-
bolic orbits than for elliptic orbits (see Figure 3.1). The average direc-
tion of the perturbing acceleration is approximated by choosing the positions
of the non-primary force center and the massless particle to the following:
on the Earth side of the mean surface of influence, their bositions at the

correction point are used; on the Moon side, the position of the Earth 2At/3
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before the correction point and the position of the massless body 24r/3

before the correction point are used.

A HYPERBOLIC

ELLIPTIC -
= ORBITS

M ORBITS
T

e—-0

>
o-u.o é o> | L'_%".{S’_).
(r/a-1) |
e

Figure 3.1 The Variation of Mean Anomaly and Position Vector Magnitude

3.3 Position Correction Direction ﬁc

Two ways of calculating ﬁc have been used. The first method uses

the polar coordinates referenced to éx which are used to describe ;l .

T and 52 (see Figure 3.2). In terms of the base vectors asso-

1952’

ciated with these coordinate systems, the expression for ﬁc is

CRATR | pemoea.

(3.7)

Figure 3.2 Polar Coordinate Systems
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where ¢ is an angle méasured positive counter-clock-wise from ér This
method of choosing ﬁé is called the "refined method", because ¢ can be

varied to give accurate results [see Table 1]. The variation of ¢ with

perilune altitude is shown in Figure 3.3.

® (DEG.)

l0QO 2000 3000

PERILUNE. ALTITUDE (N.ML)

Figure 3.3 The Variation of ¢ With Perilune Altitude for the
Circular Restricted Problem of Three Bodies

3.4 Numerical Results for "Refined" Choice of ﬁc

In the non-dimensional system, the reference quantities are the

following:

sum of the dimensional masses of the two pri-
maries

reference mass

dimensional distance between the two primaries
[60.2684 Earth radii (er) for the circular
restricted problem of three bodies

reference length

reference time [(ref. length)a/G(ref. mass)]l/2

= . 104.21989489 hrs for the circular restricted
problem of three bodies
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where G 1is the universal gravitational constant. The reference length was
chosen as the average distance between the Earth and the Moon and the total
mass of the Earth and the Moon. The masses of the Earth and Moon -produced a
masS—ratio.parameter [Equation (2.2)] of u = .012150446995297 . |

The only fixed initial condition is

r, = .0173014 ( = 147 n. mi altitude) (3.8)

The initial value of the angle o4y (see Figure 3.2) and the velocity com-

ponents él and rlel are varied in order to attain different perilune

altitudes. On the Earth side of the mean surface of influence

APO = 4977476 ( = 30 er )
Ar. = .01659244 ( = 1.0 er) | (3.9)
r, = .0173014 ( = 147 n. mi)

(rf varieé as the trajéctory changes).

For the Moon side of the mean surface of influence,

-1.0 er)

Aro = -,01659244 ( =
Arf = -.03318488 ( = -2.0 er)
(3.10)
ry = .16592u4 ( = 10.0 er)
Pf = ,00u81180 ( = .29 er)

) and time at perilune are compared with the

(10]

The values of T, s Oy s T,

integrated results, obtained with a Fehlberg Runge-Kutta RK 7(8), and
with the patched-conic values. All runs were made on the CDC 6600 digital

computer at the Computation Center of The University of Texas at Austin.

Execution times for this method are 0.32 seconds per run compared
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to 2.0 seconds for the integrated trajectory and 0.12 seconds for the patched

conic method.
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Table 1. Numerical Results at Perilune for 'Refined" Choice of ﬁc

for the Circular Restricted Problem of Three Bodies

A. 73n. mi perilune altitude (¢ = -u47.164°)
22 a, (rad)
1) Integrated results .00u8727 .00476
2) "Jacobi" method .0ou8760 .00803
Difference between .066% .oou27
(2) and (1) (.67n. mi) (.2459)
3) Patched Conic Method .0057996 .03138
Difference between 19.0% .02662
(3) and (1) (192.37n. mi) (1.527°)
B. 50ln. mi. perilune altitude (¢ = -50.658)
1) Integrated .0069359 .000155
2) "Jacobi" .0069360 .000292
Difference .OO;% .000137
(.0175n. mi) (.008°)
3) Patched Conic .008339063 .032806
Difference 20.97% .03566
(302n. mi) (2.042°)
C. 1009n. mi perilune altitude (¢ = -51.487°)
1) Integrated .0093806 .0000007
2) "Jacobi” .0093802 -.0019233
Difference -.005% -.00193
(-.0919n. mi) (-.111°)
3) Patched Conic .01048787 -.006722
Difference 11.80% -.006730
(229.8n. mi) (-.3869)

)9,

-2.47678

-2.47603
+ ,031%
(+2.55fps)

-2.28714
+7.656%
(+637.5fps)

-2.12414

-2.12400
+ .006%

(* .459fps)

-1.95088
+8,156%
(+582fps)

r,9,

-1.872641

~1.872487 .
+ .008%
(+.52fps)

~1.76446